Übersetzung
ausblenden
Widerlegung aller Häresien (BKV)
14.
Diejenigen also, welche glauben, mittels Rechensteinen und Zahlen, Buchstaben und Namen weissagen zu können, nahmen zum Ausgangspunkt der Untersuchung für ihre Lehre die Behauptung, es gebe eine Grundzahl für jede Zahl; bei den Tausendern geben so viele Einheiten, als es Tausender sind, die Grundzahl, z. B. bei Sechstausend ist die Grundzahl sechs S. 56 Einheiten, bei Siebentausend ist sie sieben Einheiten, bei Achttausend ist sie acht Einheiten und bei den anderen ebenso, und bei den Hunderten ist die Grundzahl ebenso viele Einheiten als es Hunderter sind, z. B bei Siebenhundert sind es sieben Hunderter, die Grundzahl ist sieben Einheiten, bei Sechshundert sind es sechs Hunderter, die Grundzahl ist sechs Einheiten. Dasselbe gilt auch von den Zehnern, bei Achtzig sind es acht Einheiten, bei Sechzig sind es sechs Einheiten, bei Vierzig sind es vier Einheiten, bei Zehn ist es eine Einheit. Bei den Einern sind die Grundzahlen die Einheiten selbst, z. B. bei neun neun, bei acht acht, bei sieben sieben. So muß man es auch bei den Buchstaben machen, denn jeder Buchstabe hat einen bestimmten Zahlenwert, z. B. Ny hat fünfzig Einheiten; die Grundzahl von fünfzig ist fünf; ebenso ist vom Buchstaben Ny die Grundzahl fünf. Es sollen nunmehr aus irgendeinem Namen die Grundzahlen gezogen werden. Z. B. beim Namen Agamemnon hat Alpha eine Einheit, Gamma drei, das zweite Alpha eine, My vier, Epsilon fünf, My vier, Ny fünf, Omega acht, Ny fünf, zusammengestellt: 1, 3, 1, 4, 5, 4, 5, 8, 5; dies addiert gibt sechsunddreißig. Man nimmt davon wiederum die Grundzahlen; von dreißig ist die Grundzahl drei, von sechs die Grundzahl sechs. Drei und sechs gibt zusammengerechnet neun, von neun ist die Grundzahl neun. Das Wort Agamemnon beruht also auf der Grundzahl neun. Nun wollen wir es mit einem anderen Namen versuchen, mit Hektor. Das Wort Hektor hat die Buchstaben Epsilon, Kappa, Tau, Omega, Rho; die Grundzahlen davon sind fünf, zwei, drei, acht, eins; diese addiert gibt neunzehn; von zehn ist die Grundzahl eins, von neun die Grundzahl neun, diese addiert gibt zehn; von zehn aber ist die Grundzahl eins. Rechnerisch also ergibt das Wort Hektor als Grundzahl eins. Schneller noch führt folgendes Verfahren zum Ziel: Die aus den Buchstaben gefundenen Grundzahlen, wie wir jetzt beim Wort Hektor neunzehn gefunden haben, teile durch neun und nimm den Rest als Grundzahl; z. B. wenn ich neunzehn durch neun teile, bleibt als Rest eins, denn neunmal zwei ist gleich achtzehn, und eins bleibt übrig; denn wenn ich von S. 57 neunzehn achtzehn subtrahiere, bleibt eins, daher muß die Grundzahl von Hektor eins sein. Die Grundzahlen des Wortes Patroklos sind folgende: acht, eins, drei, eins, sieben, drei, sieben, zwei; addiert geben sie vierunddreißig, der Rest davon ist sieben; von dreißig nämlich drei und von vier vier, die Grundzahl des Wortes Patroklos ist also sieben. Die nach dem Neunersystem rechnen, nehmen aus der Summe der Grundzahl das durch neun Teilbare weg und bestimmen den Rest als Grundzahl; die aber nach dem Siebenersystem rechnen, das Vielfache von sieben; so ergibt sich als Summe der Grundzahlen beim Worte Patroklos 34; dieses dividiert durch sieben gibt vier, das ergibt 28, und übrig bleibt sechs; Grundzahl des Wortes Patroklos ist sechs nach dem Siebenersystem. Wenn die Zahlensumme aber dreiundvierzig ist, ist das Vielfache von sieben zweiundvierzig, denn siebenmal sechs ist gleich zweiundvierzig, und als Rest bleibt eins. Eins ist also Grundzahl von dreiundvierzig nach dem Siebenersystem. Man muß aber achtgeben, wenn die erhaltene Zahl bei der Division restlos aufgeht. Z. B, wenn ich aus einem Namen beim Zusammenzählen als Grundzahl sechsunddreißig finde. Die Zahl sechsunddreißig, geteilt durch neun, gibt gerade vier Neuner, denn neunmal vier macht sechsunddreißig, und es bleibt kein Rest. Also ist offenbar die Grundzahl neun. Und wiederum, wenn es sich zeigt, daß bei der Division mit neun die Zahl 45 restlos aufgeht — denn neunmal fünf ist fünfundvierzig, und nichts bleibt übrig —, gilt bei solchen Zahlen neun selber als Grundzahl. Ähnlich ist es beim Siebenersystem, wenn wir beispielsweise die Zahl achtundzwanzig durch sieben restlos dividieren — denn siebenmal vier ist achtundzwanzig, und es bleibt kein Rest —, heißt die Grundzahl sieben. Wenn man nun die Namen berechnet und zweimal denselben Buchstaben findet, zählt dieser nur einmal, z. B. der Name Patroklos hat das o zweimal; man rechnet also o nur einmal, darnach sind die Grundzahlen acht, eins, drei, eins, sieben, zwei, drei, zwei und addiert siebenundzwanzig, und Grundzahl des Namens ist nach dem Neunersystem neun und nach dem Siebenersystem sechs. So gibt Sarpedon nach dem S. 58 Neunersystem gerechnet zwei als Grundzahl, Patroklos gibt aber neun; Patroklos ist Sieger. Denn da die eine Grundzahl ungerade, die andere gerade ist, siegt die ungerade, wenn sie größer ist. Bei acht und fünf siegt, da acht gerade und fünf ungerade ist, acht, denn es ist die größere Zahl. Wenn aber zwei Zahlen, z. B. beide Gerade oder beide Ungerade sind, siegt die kleinere. Wie aber ergibt Sarpedon nach dem Neunersystem zwei? Es wird nämlich der Buchstabe Omega ausgelassen. Wenn nämlich in einem Worte der Buchstabe Omega und Eta vorkommt, lassen sie Omega aus und zählen nur einen Buchstaben, denn sie sagen, beide (Buchstaben) bedeuten dasselbe; dieselbe Zahl aber wird, wie schon gesagt, nicht zweimal gerechnet. Der Name Aias ergibt vier Einheiten, Hektor nach dem Neunersystem eine Einheit; vier ist eine gerade, eins eine ungerade Zahl. In solchen Fällen, sagten wir, siege die größere Zahl, es siegt Aias; Wie steht es mit Alexandros und Menelaos? Alexandros hat als eigentlichen Namen Paris. Paris aber zählt nach dem Neunersystem vier, Menelaos nach dem Neunersystem neun; neun siegt über vier; denn es heißt, wenn eine Zahl ungerade ist, die andere gerade, siegt die größere; wenn beide gerade oder beide ungerade, die kleinere. Nun zu Amykos und Polydeukes. Amykos zählt nach dem Neunersystem zwei und Polydeukes sieben; es siegt Polydeukes. Aias und Odysseus kämpften beim gleichen Wettkampf. Aias ergibt nach dem Neunersystem vier, Odysseus acht nach demselben System. Ist also der Name Odysseus etwa nur ein Zuname, nicht der eigentliche? Er siegte ja. Nach den Zahlen siegt Aias, die Geschichte nennt Odysseus als Sieger. Achilleus und Hektor: Achilleus gibt nach dem Neunersystem vier, Hektor eins; Achilleus siegt. Ferner Achilleus und Asteropaios: Achilleus ergibt vier, Asteropaios drei; Achilleus siegt. Weiters Menelaos und Euphorbos: Menelaos hat neun Einheiten, Euphorbos acht; Menelaos siegt. Manche rechnen nach dem Siebenersystem nur mit den Vokalen, andere gruppieren Vokale, Halbvokale, Muten eigens, bilden drei Gruppen, nehmen für Vokale, Halbvokale und Konsonanten eigene Grundzahlen an und behandeln jede gesondert. S. 59 Andere rechnen auch nicht mit den gewöhnlichen Zahlen, sondern mit anderen; so sagen sie beispielsweise, der Buchstabe Rho habe als Grundzahl nicht acht, sondern fünf, der Buchstabe Xi habe als Grundzahl vier. Sie haben alle möglichen Variationen und finden doch nichts Vernünftiges. Wenn manche zum zweitenmal miteinander kämpfen, nehmen sie von beiden Namen den ersten Buchstaben weg, wenn zum drittenmale, zwei auf beiden Seiten, berechnen das übrige und entscheiden dann.
Übersetzung
ausblenden
The Refutation of All Heresies
Chapter XIV.--System of the Arithmeticians; Predictions Through Calculations; Numerical Roots; Transference of These Doctrines to Letters; Examples in Particular Names; Different Methods of Calculation; Prescience Possible by These.
Those, then, who suppose that they prophesy by means of calculations and numbers, 1 and elements and names, constitute the origin of their attempted system to be as follows. They affirm that there is a root of each of the numbers; in the case of thousands, so many monads as there are thousands: for example, the root of six thousand, six monads; of seven thousand, seven monads; of eight thousand, eight monads; and in the case of the rest, in like manner, according to the same (proportion). And in the case of hundreds, as many hundreds as there are, so many monads are the root of them: for instance, of seven hundred there are seven hundreds; the root of these is seven monads: of six hundred, six hundreds; the root of these, six monads. And it is similar respecting decades: for of eighty (the root is) eight monads; and of sixty, six monads; of forty, four monads; of ten, one monad. And in the case of monads, the monads themselves are a root: for instance, of nine, nine; of eight, eight; of seven, seven. In this way, also, ought we therefore to act in the case of the elements (of words), for each letter has been arranged according to a certain number: for instance, the letter n according to fifty monads; but of fifty monads five is the root, and the root of the letter n is (therefore) five. Grant that from some name we take certain roots of it. For instance, (from) the name Agamemnon, there is of the a, one monad; and of the g, three monads; and of the other a, one monad; of the m, four monads; of the e, five monads; of the m, four monads; of the n, five monads; of the (long) o, eight monads; of the n, five monads; which, brought together into one series, will be 1, 3, 1, 4, 5, 4, 5, 8, 5; and these added together make up 36 monads. Again, they take the roots of these, and they become three in the case of the number thirty, but actually six in the case of the number six. The three and the six, then, added together, constitute nine; but the root of nine is nine: therefore the name Agamemnon terminates in the root nine.
Let us do the same with another name--Hector. The name (H)ector has five letters--e, and k, and t, and o, and r. The roots of these are 5, 2, 3, 8, 1; and these added together make up 19 monads. Again, of the ten the root is one; and of the nine, nine; which added together make up ten: the root of ten is a monad. The name Hector, therefore, when made the subject of computation, has formed a root, namely a monad. It would, however, be easier 2 to conduct the calculation thus: Divide the ascertained roots from the letters--as now in the case of the name Hector we have found nineteen monads--into nine, and treat what remains over as roots. For example, if I divide 19 into 9, the remainder is 1, for 9 times 2 are 18, and there is a remaining monad: for if I subtract 18 from 19, there is a remaining monad; so that the root of the name Hector will be a monad. Again, of the name Patroclus these numbers are roots: 8, 1, 3, 1, 7, 2, 3, 7, 2; added together, they make up 34 monads. And of these the remainder is 7 monads: of the 30, 3; and of the 4, 4. Seven monads, therefore, are the root of the name Patroclus.
Those, then, that conduct their calculations according to the rule of the number nine, 3 take the ninth part of the aggregate number of roots, and define what is left over as the sum of the roots. They, on the other hand, (who conduct their calculations) according to the rule of the number seven, take the seventh (part of the aggregate number of roots); for example, in the case of the name Patroclus, the aggregate in the matter of roots is 34 monads. This divided into seven parts makes four, which (multiplied into each other) are 28. There are six remaining monads; (so that a person using this method) says, according to the rule of the number seven, that six monads are the root of the name Patroclus. If, however, it be 43, (six) taken seven times, 4 he says, are 42, for seven times six are 42, and one is the remainder. A monad, therefore, is the root of the number 43, according to the rule of the number seven. But one ought to observe if the assumed number, when divided, has no remainder; for example, if from any name, after having added together the roots, I find, to give an instance, 36 monads. But the number 36 divided into nine makes exactly 4 enneads; for nine times 4 are 36, and nothing is over. It is evident, then, that the actual root is 9. And again, dividing the number forty-five, we find nine 5 and nothing over--for nine times five are forty-five, and nothing remains; (wherefore) in the case of such they assert the root itself to be nine. And as regards the number seven, the case is similar: if, for example we divide 28 into 7, we have nothing over; for seven times four are 28, and nothing remains; (wherefore) they say that seven is the root. But when one computes names, and finds the same letter occurring twice, he calculates it once; for instance, the name Patroclus has the pa twice, 6 and the o twice: they therefore calculate the a once and the o once. According to this, then, the roots will be 8, 1, 3, 1, 7, 2, 3, 2, and added together they make 27 monads; and the root of the name will be, according to the rule of the number nine, nine itself, but according to the rule of the number seven, six.
In like manner, (the name) Sarpedon, when made the subject of calculation, produces as a root, according to the rule of the number nine, two monads. Patroclus, however, produces nine monads; Patroclus gains the victory. For when one number is uneven, but the other even, the uneven number, if it is larger, prevails. But again, when there is an even number, eight, and five an uneven number, the eight prevails, for it is larger. If, however, there were two numbers, for example, both of them even, or both of them odd, the smaller prevails. But how does (the name) Sarpedon, according to the rule of the number nine, make two monads, since the letter (long) o is omitted? For when there may be in a name the letter (long) o and (long) e, they leave out the (long) o, using one letter, because they say both are equipollent; and the same must not be computed twice over, as has been above declared. Again, (the name) Ajax makes four monads; (but the name) Hector, according to the rule of the ninth number, makes one monad. And the tetrad is even, whereas the monad odd. And in the case of such, we say, the greater prevails--Ajax gains the victory. Again, Alexander and Menelaus (may be adduced as examples). Alexander has a proper name (Paris). But Paris, according to the rule of the number nine, makes four monads; and Menelaus, according to the rule of the number nine, makes nine monads. The nine, however, conquer the four (monads): for it has been declared, when the one number is odd and the other even, the greater prevails; but when both are even or both odd, the less (prevails). Again, Amycus and Polydeuces (may be adduced as examples). Amycus, according to the rule of the number nine, makes two monads, and Polydeuces, however, seven: Polydeuces gains the victory. Ajax and Ulysses contended at the funeral games. Ajax, according to the rule of the number nine, makes four monads; Ulysses, according to the rule of the number nine, (makes) eight. 7 Is there, then, not any annexed, and (is there) not a proper name for Ulysses? 8 for he has gained the victory. According to the numbers, no doubt, Ajax is victorious, but history hands down the name of Ulysses as the conqueror. Achilles and Hector (may be adduced as examples). Achilles, according to the rule of the number nine, makes four monads; Hector one: Achilles gains the victory. Again, Achilles and Asteropaeus (are instances). Achilles makes four monads, Asteropaeus three: Achilles conquers. Again, Menelaus and Euphorbus (may be adduced as examples). Menelaus has nine monads, Euphorbus eight: Menelaus gains the victory.
Some, however, according to the rule of the number seven, employ the vowels only, but others distinguish by themselves the vowels, and by themselves the semi-vowels, and by themselves the mutes; and, having formed three orders, they take the roots by themselves of the vowels, and by themselves of the semi-vowels, and by themselves of the mutes, and they compare each apart. Others, however, do not employ even these customary numbers, but different ones: for instance, as an example, they do not wish to allow that the letter p has as a root 8 monads, but 5, and that the (letter) x (si) has as a root four monads; and turning in every direction, they discover nothing sound. When, however, they contend about the second (letter), from each name they take away the first letter; but when they contend about the third (letter), they take away two letters of each name, and calculating the rest, compare them.
Aegypt., tom. ii. part i., de Cabalâ Hebraeorum; also in his Arithmolog. in the book De Arithmomantia Gnosticor., cap. viii., de Cabalâ
Pythagoreâ. See also Mersennes, Comment. on Genes.
-
The subject of the numerical system employed by the Gnostics, and their occult mysteries, is treated of by the learned Kircher, OEdipi ↩
-
This subject is examined by Cornelius Agrippa in his celebrated work, De vanitate et incertitudine Scientiarum, chap. xi., De Sorte Pythagoricâ. Terentius Maurus has also a versified work on Letters and Syllables and Metres, in which he alludes to similar interpretations educible from the names Hector and Patroclus. ↩
-
That is, the division by nine. ↩
-
That is, calculated according to the rule of a division by seven. ↩
-
We should expect rather five instead of 9, if the division be by nine. ↩
-
There is some confusion in the text. Miller conjectures that the reading should be: "As, for instance, the name Patroclus has the letter o occurring twice in it, they therefore take it into calculation once." Schneidewin suggests that the form of the name may be Papatroclus. ↩
-
Miller says there is an error in the calculation here. ↩
-
This is as near the sense of the passage as a translation in some respects conjectural can make it. ↩